On products of Baire spaces

László Zsilinszky

The University of North Carolina at Pembroke

30th Summer Conference on Topology and its Applications NUI Galway June 23–26, 2015

ullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X

- *X* is a **Baire space** iff countable intersections of dense open subsets of *X* are dense in *X*
- ullet X is **hereditarily Baire** iff the closed subspaces of X are Baire

- \bullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X
- \bullet X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire

- *X* is a **Baire space** iff countable intersections of dense open subsets of *X* are dense in *X*
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire

- *X* is a **Baire space** iff countable intersections of dense open subsets of *X* are dense in *X*
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH):

- *X* is a **Baire space** iff countable intersections of dense open subsets of *X* are dense in *X*
- *X* is **hereditarily Baire** iff the closed subspaces of *X* are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire

- *X* is a **Baire space** iff countable intersections of dense open subsets of *X* are dense in *X*
- *X* is **hereditarily Baire** iff the closed subspaces of *X* are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974):

- *X* is a **Baire space** iff countable intersections of dense open subsets of *X* are dense in *X*
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974): Fix a a π -base $\mathcal B$ of a topological space Y,

- ullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974): Fix a a π -base $\mathcal B$ of a topological space Y, the **Krom space** of Y is

$$\mathcal{K}r(Y) = \{ f \in \mathcal{B}^{\omega} : f \text{ decreasing and } \bigcap_{n} f(n) \neq \emptyset \},$$

where \mathcal{B} is endowed with the discrete topology.

- ullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974): Fix a a π -base $\mathcal B$ of a topological space Y, the **Krom space** of Y is

$$\mathcal{K}r(Y) = \{ f \in \mathcal{B}^{\omega} : f \text{ decreasing and } \bigcap_{n} f(n) \neq \emptyset \},$$

- ullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974): Fix a a π -base $\mathcal B$ of a topological space Y, the **Krom space** of Y is

$$\mathcal{K}r(Y)=\{f\in\mathcal{B}^\omega: f \text{ decreasing and } \bigcap_n f(n)\neq\emptyset\},$$

• White (1975 - CH): \exists Tychonoff hereditarily Baire X with X^2 meager

- ullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974): Fix a a π -base $\mathcal B$ of a topological space Y, the **Krom space** of Y is

$$\mathcal{K}r(Y) = \{ f \in \mathcal{B}^{\omega} : f \text{ decreasing and } \bigcap_{n} f(n) \neq \emptyset \},$$

- White (1975 CH): \exists Tychonoff hereditarily Baire X with X^2 meager
- ZFC:

- ullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974): Fix a a π -base $\mathcal B$ of a topological space Y, the **Krom space** of Y is

$$\mathcal{K}r(Y) = \{ f \in \mathcal{B}^{\omega} : f \text{ decreasing and } \bigcap_{n} f(n) \neq \emptyset \},$$

- White (1975 CH): \exists Tychonoff hereditarily Baire X with X^2 meager
- ZFC: Cohen (1976),

- ullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974): Fix a a π -base $\mathcal B$ of a topological space Y, the **Krom space** of Y is

$$\mathcal{K}r(Y)=\{f\in\mathcal{B}^\omega: f \text{ decreasing and } \bigcap_n f(n)\neq\emptyset\},$$

- White (1975 CH): \exists Tychonoff hereditarily Baire X with X^2 meager
- ZFC: Cohen (1976), Fleissner-Kunen (1978),

- ullet X is a **Baire space** iff countable intersections of dense open subsets of X are dense in X
- X is **hereditarily Baire** iff the closed subspaces of X are Baire
- $X \times Y$ Baire $\Rightarrow X, Y$ Baire
- Products of Baire spaces may be non-Baire
 - Oxtoby (1961 CH): \exists Tychonoff Baire X with X^2 not Baire
 - Krom (1974): Fix a a π -base $\mathcal B$ of a topological space Y, the **Krom space** of Y is

$$\mathcal{K}r(Y)=\{f\in\mathcal{B}^\omega: f \text{ decreasing and } \bigcap_n f(n)\neq\emptyset\},$$

- White (1975 CH): \exists Tychonoff hereditarily Baire X with X^2 meager
- ZFC: Cohen (1976), Fleissner-Kunen (1978), van Mill-Pol (1986)

 X_i Baire space +

 X_i Baire space + countable π -base

 X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space

 X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space

• L. Zs. (2004)

 X_i Baire space + countable-in-itself π -base

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)
- X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)
- X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

Given Baire spaces X, Y,

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)
- X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

Given Baire spaces X, Y, when is $X \times Y$ a Baire space?

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)
- X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

Given Baire spaces X, Y, when is $X \times Y$ a Baire space?

Moors (2006): if Y is a metrizable hereditarily Baire space

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)
- X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

Given Baire spaces X, Y, when is $X \times Y$ a Baire space?

Moors (2006): if Y is a metrizable hereditarily Baire space **Moors-(Chaber-Pol)**:

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)
- X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

Given Baire spaces X, Y, when is $X \times Y$ a Baire space?

Moors (2006): if Y is a metrizable hereditarily Baire space **Moors-(Chaber-Pol)**: if Y is any product of metrizable hereditary Baire spaces

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)
- X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

Given Baire spaces X, Y, when is $X \times Y$ a Baire space?

Moors (2006): if Y is a metrizable hereditarily Baire space

Moors-(Chaber-Pol): if Y is any product of metrizable hereditary Baire spaces

Baire spaces

Lin - Moors (2008):

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)

 X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

Question

Given Baire spaces X, Y, when is $X \times Y$ a Baire space?

Moors (2006): if Y is a metrizable hereditarily Baire space **Moors-(Chaber-Pol)**: if Y is any product of metrizable hereditary Baire spaces

Lin - **Moors** (2008): if Y is a regular W-space with a rich family of Baire spaces.

- Oxtoby (1961)
- X_i Baire space + countable π -base $\Rightarrow \prod_i X_i$ Baire space
- L. Zs. (2004)

 X_i Baire space + countable-in-itself π -base $\Rightarrow \prod_i X_i$ Baire space

Question

Given Baire spaces X, Y, when is $X \times Y$ a Baire space?

Moors (2006): if Y is a metrizable hereditarily Baire space

Moors-(Chaber-Pol): if Y is any product of metrizable hereditary Baire spaces

Lin - **Moors** (2008): if Y is a regular W-space with a rich family of Baire spaces.

White (1975): if Y is weakly α -favorable

 $x_0 \in V_0$

$$x_0\in \textit{U}_0\subseteq\textit{V}_0$$

 $x_1 \in V_1 \subseteq U_0 \subseteq V_0$

 $x_1 \in \mathit{U}_1 \subseteq \mathit{V}_1 \subseteq \mathit{U}_0 \subseteq \mathit{V}_0$

 $\cdots \subseteq \textit{U}_1 \subseteq \textit{V}_1 \subseteq \textit{U}_0 \subseteq \textit{V}_0$

$$\cdots \subseteq \textit{U}_1 \subseteq \textit{V}_1 \subseteq \textit{U}_0 \subseteq \textit{V}_0$$

 α wins, if $\bigcap_n U_n \neq \emptyset$;

Strong Choquet game Ch(X)

$$\cdots \subseteq \textit{U}_1 \subseteq \textit{V}_1 \subseteq \textit{U}_0 \subseteq \textit{V}_0$$

 α wins, if $\bigcap_n U_n \neq \emptyset$; β wins, if $\bigcap_n U_n = \emptyset$

Banach-Mazur game BM(X)

Banach-Mazur game BM(X)

$$\cdots \subseteq \textit{U}_1 \subseteq \textit{V}_1 \subseteq \textit{U}_0 \subseteq \textit{V}_0$$

 α wins, if $\bigcap_n U_n \neq \emptyset$; β wins, if $\bigcap_n U_n = \emptyset$

• (Oxtoby, Krom) X is β -unfavorable in $BM(X) \Leftrightarrow X$ is Baire

- (Oxtoby, Krom) X is β -unfavorable in $BM(X) \Leftrightarrow X$ is Baire
- (White) If X is metrizable, then

- (Oxtoby, Krom) X is β -unfavorable in $BM(X) \Leftrightarrow X$ is Baire
- ② (White) If X is metrizable, then X is weakly α -favorable $\Leftrightarrow X$ has a dense G_{δ} completely metrizable subspace

- (Oxtoby, Krom) $X \text{ is } \beta\text{-unfavorable in } BM(X) \Leftrightarrow X \text{ is Baire}$
- ② (White) If X is metrizable, then X is weakly α -favorable $\Leftrightarrow X$ has a dense G_{δ} completely metrizable subspace
- \odot (Choquet) If X is metrizable, then

- (Oxtoby, Krom) X is β -unfavorable in $BM(X) \Leftrightarrow X$ is Baire
- ② (White) If X is metrizable, then X is weakly α -favorable $\Leftrightarrow X$ has a dense G_{δ} completely metrizable subspace
- **③** (Choquet) If X is metrizable, then X is α -favorable in $Ch(X) \Leftrightarrow X$ is completely metrizable

- (Oxtoby, Krom) X is β -unfavorable in $BM(X) \Leftrightarrow X$ is Baire
- ② (White) If X is metrizable, then X is weakly α -favorable $\Leftrightarrow X$ has a dense G_{δ} completely metrizable subspace
- **3** (Choquet) If X is metrizable, then X is α -favorable in $Ch(X) \Leftrightarrow X$ is completely metrizable
- lacktriangle (Telgársky, Debs) If X is metrizable, then

- (Oxtoby, Krom) X is β -unfavorable in $BM(X) \Leftrightarrow X$ is Baire
- ② (White) If X is metrizable, then X is weakly α -favorable $\Leftrightarrow X$ has a dense G_{δ} completely metrizable subspace
- **③** (Choquet) If X is metrizable, then X is α -favorable in $Ch(X) \Leftrightarrow X$ is completely metrizable
- **③** (Telgársky,Debs) If X is metrizable, then X is β -unfavorable in $Ch(X) \Leftrightarrow X$ is hereditarily Baire

Finite products (*I* finite)

Finite products (/ finite)

Theorem

Let X be a Baire space, Y_i have a dense set of W-points and $Ch(Y_i)$ be β -unfavorable for each $i \in I$. Then

Finite products (*I* finite)

Theorem

Let X be a Baire space, Y_i have a dense set of W-points and $Ch(Y_i)$ be β -unfavorable for each $i \in I$. Then $X \times \prod_{i \in I} Y_i$ is Baire.

Finite products (/ finite)

Theorem

Let X be a Baire space, Y_i have a dense set of W-points and $Ch(Y_i)$ be β -unfavorable for each $i \in I$. Then $X \times \prod_{i \in I} Y_i$ is Baire.

Corrolary

Let X be a Baire space, and Y_i a 1st countable, hereditarily Baire, R_0 -space for each $i \in I$. Then

Finite products (/ finite)

Theorem

Let X be a Baire space, Y_i have a dense set of W-points and $Ch(Y_i)$ be β -unfavorable for each $i \in I$. Then $X \times \prod_{i \in I} Y_i$ is Baire.

Corrolary

Let X be a Baire space, and Y_i a 1st countable, hereditarily Baire, R_0 -space for each $i \in I$. Then $X \times \prod_{i \in I} Y_i$ is Baire.

Theorem

Let X be a Baire space, and Y_i be an R_0 hereditarily Baire space with a BCO for each $i \in I$.

Theorem

Let X be a Baire space, and Y_i be an R_0 hereditarily Baire space with a BCO for each $i \in I$. Then $X \times \prod_i Y_i$ is a Baire space.

Theorem

Let X be a Baire space, and Y_i be an R_0 hereditarily Baire space with a BCO for each $i \in I$. Then $X \times \prod_i Y_i$ is a Baire space.

Proof.

 $lackbox{1}_{i\in I} Z_i$ is Baire $\Leftrightarrow \prod_{i\in I} \mathcal{K}r(Z_i)$ is Baire

Theorem

Let X be a Baire space, and Y_i be an R_0 hereditarily Baire space with a BCO for each $i \in I$. Then $X \times \prod_i Y_i$ is a Baire space.

Proof.

- **1** $\prod_{i \in I} Z_i$ is Baire $\Leftrightarrow \prod_{i \in I} \mathcal{K}r(Z_i)$ is Baire
- 2 Let Y_i be an R_0 -space with a BCO, define $\mathcal{K}r_0(Y_i)$ via $\{f \in \mathcal{K}r(Y_i) : (f(n))_n \text{ nbhd base at each } y \in \bigcap_n f(n)\}$. Then

Theorem

Let X be a Baire space, and Y_i be an R_0 hereditarily Baire space with a BCO for each $i \in I$. Then $X \times \prod_i Y_i$ is a Baire space.

Proof.

- **1** $\prod_{i \in I} Z_i$ is Baire $\Leftrightarrow \prod_{i \in I} \mathcal{K}r(Z_i)$ is Baire
- 2 Let Y_i be an R_0 -space with a BCO, define $\mathcal{K}r_0(Y_i)$ via $\{f \in \mathcal{K}r(Y_i) : (f(n))_n \text{ nbhd base at each } y \in \bigcap_n f(n)\}$. Then
 - a) $\prod_{i \in I} Y_i$ is Baire $\Leftrightarrow \prod_{i \in I} \mathcal{K}r_0(Y_i)$ is Baire

Theorem

Let X be a Baire space, and Y_i be an R_0 hereditarily Baire space with a BCO for each $i \in I$. Then $X \times \prod_i Y_i$ is a Baire space.

Proof.

- **1** $\prod_{i \in I} Z_i$ is Baire $\Leftrightarrow \prod_{i \in I} \mathcal{K}r(Z_i)$ is Baire
- 2 Let Y_i be an R_0 -space with a BCO, define $\mathcal{K}r_0(Y_i)$ via $\{f \in \mathcal{K}r(Y_i) : (f(n))_n \text{ nbhd base at each } y \in \bigcap_n f(n)\}$. Then
 - a) $\prod_{i \in I} Y_i$ is Baire $\Leftrightarrow \prod_{i \in I} \mathcal{K}r_0(Y_i)$ is Baire
 - b) Y_i is hereditarily Baire $\Leftrightarrow \mathcal{K}r_0(Y_i)$ is hereditarily Baire

