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X is weakly a-favorable < X has a dense G5 completely
metrizable subspace

@ (Choquet) If X is metrizable, then
X is a-favorable in Ch(X) < X is completely metrizable

Q (Telgérsky,Debs) If X is metrizable, then
X is B-unfavorable in Ch(X) < X is hereditarily Baire
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